Invasion of Cryptococcus neoformans into human brain microvascular endothelial cells is mediated through the lipid rafts-endocytic pathway via the dual specificity tyrosine phosphorylation-regulated kinase 3 (DYRK3).
نویسندگان
چکیده
Cryptococcus neoformans is a neurotropic fungal pathogen, which provokes the onset of devastating meningoencephalitis. We used human brain microvascular endothelial cells (HBMEC) as the in vitro model to investigate how C. neoformans traverses across the blood-brain barrier. In this study, we present several lines of evidence indicating that C. neoformans invasion is mediated through the endocytic pathway via lipid rafts. Human CD44 molecules from lipid rafts can directly interact with hyaluronic acid, the C. neoformans ligand. Bikunin, which perturbs CD44 function in the lipid raft, can block C. neoformans adhesion and invasion of HBMEC. The lipid raft marker, ganglioside GM1, co-localizes with CD44 on the plasma membrane, and C. neoformans cells can adhere to the host cell in areas where GM1 is enriched. These findings suggest that C. neoformans entry takes place on the lipid rafts. Upon C. neoformans engagement, GM1 is internalized through vesicular structures to the nuclear membrane. This endocytic redistribution process is abolished by cytochalasin D, nocodazole, or anti-DYRK3 (dual specificity tyrosine-phosphorylation-regulated kinase 3) siRNA. Concomitantly, the knockdown of DYRK3 significantly reduces C. neoformans invasion across the HBMEC monolayer in vitro. Our data demonstrate that the lipid raft-dependent endocytosis process mediates C. neoformans internalization into HBMEC and that the CD44 protein of the hosts, cytoskeleton, and intracellular kinase-DYRK3 are involved in this process.
منابع مشابه
HIV-1 gp41 ectodomain enhances Cryptococcus neoformans binding to human brain microvascular endothelial cells via gp41 core-induced membrane activities.
Cryptococcus neoformans causes life-threatening meningoencephalitis, particularly prevalent in AIDS patients. The interrelationship between C. neoformans and HIV-1 is intriguing, as both pathogens elicit severe neuropathological complications. We have previously demonstrated that the HIV-1 gp41 ectodomain fragments gp41-I33 (amino acids 579-611) and gp41-I90 (amino acids 550-639) can enhance C....
متن کاملInduction of Brain Microvascular Endothelial Cell Urokinase Expression by Cryptococcus neoformans Facilitates Blood-Brain Barrier Invasion
The invasive ability of the blood-borne fungal pathogen Cryptococcus neoformans can be enhanced through interactions with host plasma components, such as plasminogen. Previously we showed by in vitro studies that plasminogen coats the surface of C. neoformans and is converted to the active serine protease, plasmin, by host plasminogen activators. Viable, but not formaldehyde- or sodium azide-ki...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملCryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier.
Cryptococcal meningoencephalitis develops as a result of hematogenous dissemination of inhaled Cryptococcus neoformans from the lung to the brain. The mechanism(s) by which C. neoformans crosses the blood-brain barrier (BBB) is a key unresolved issue in cryptococcosis. We used both an in vivo mouse model and an in vitro model of the human BBB to investigate the cryptococcal association with and...
متن کاملCell Invasion by Neisseria meningitidis Requires a Functional Interplay between the Focal Adhesion Kinase, Src and Cortactin
Entry of Neisseria meningitidis (the meningococcus) into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin or vitronectin bound to the surface protein Opc forming a bridge to the respective integrins. This interaction leads to cytoskeletal rearrangement and uptake of meningococci. In this study, we determined that the focal adhesion kinase (FAK), which directly asso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 286 40 شماره
صفحات -
تاریخ انتشار 2011